/ FLX

How To Secure Nginx with Let’s Encrypt on
Ubuntu 20.04

Introduction

Let's Encrypt is a Certificate Authority (CA) that provides an easy way to obtain and install free TLS/SSL certificates, thereby enabling
encrypted HTTPS on web servers. It simplifies the process by providing a software client, Certbot, that attempts to automate most (if
not all) of the required steps. Currently, the entire process of obtaining and installing a certificate is fully automated on both Apache
and Nginx.

In this tutorial, you will use Certbot to obtain a free SSL certificate for Nginx on Ubuntu 20.04 and set up your certificate to renew
automatically.

This tutorial will use a separate Nginx server configuration file instead of the default file. | recommmend creating new Nginx server
block files for each domain because it helps to avoid common mistakes and maintains the default files as a fallback configuration.

Prerequisites

To follow this tutorial, you will need:

- One Ubuntu 20.04 server set up by following this initial server setup for Ubuntu 20.04 tutorial, including a sudo non-root user
and a firewall.

- A fully registered domain name. This tutorial will use your_domain as an example throughout. You can purchase a domain
name on Namecheap, get one for free on Freenom, or use the domain registrar of your choice.

- Both of the following DNS records set up for your server. You can follow this introduction to DigitalOcean DNS for details on
how to add them.

-An record with your_domain pointing to your server’s public IP address.
-An record with www.your_domain pointing to your server's public IP address.

- Nginx installed by following How To Install Nginx on Ubuntu 20.04. Be sure that you have a server block for your domain. This
tutorial will use /ete/nginx/sites-available/example.com as an example.

[]
Step 1 - Installing Certbot
The first step to using Let's Encrypt to obtain an SSL certificate is to install the Certbot software on your server.

Install Certbot and it's Nginx plugin with apt:

sudo apt install certbot python3-certbot-nginx

https://slashflex.io/
https://github.com/Slashflex
https://www.linkedin.com/in/david-saoud-775624174/
mailto:pro.davidsaoud@gmail.com
https://slashflex.io/
https://slashflex.io/blog/post/how-to-install-nginx-on-ubuntu-20-04#step-5-setting-up-server-blocks-(recommended)
https://slashflex.io/blog/post/initial-server-setup-with-ubuntu-20-04
https://namecheap.com/
http://www.freenom.com/en/index.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-digitalocean-dns
https://slashflex.io/blog/post/how-to-install-nginx-on-ubuntu-20-04
https://slashflex.io/blog/post/how-to-install-nginx-on-ubuntu-20-04#step-5-setting-up-server-blocks-(recommended)
https://slashflex.io/

Certbot is now ready to use, but in order for it to automatically configure SSL for Nginx, we need to verify some of Nginx's
configuration.

Step 2 - Confirming Nginx’s Configuration

Certbot needs to be able to find the correct server block in your Nginx configuration for it to be able to automatically configure SSL.
Specifically, it does this by looking for a server_name directive that matches the domain you request a certificate for.

If you followed the server block set up step in the Nginx installation tutorial, you should have a server block for your domain at
[etc/nginx/sites-available/example.com with the server_name a directive already set appropriately.

To check, open the configuration file for your domain using nano or your preferred text editor:

sudo nano /etc/nginx/sites-available/example.com

Find the existing server_name. It should look like this:

server_name example.com WWW.exampIe.com

If it does, exit your editor and move on to the next step.

If it doesn't, update it to match. Then save the file, quit your editor, and verify the syntax of your configuration edits:

sudo nginx

If you get an error, reopen the server block file and check for any typos or missing characters. Once your configuration file's syntax is
correct, reload Nginx to load the new configuration:

sudo systemctl reload nginx

Certbot can now find the correct server block and update it automatically.

Next, we'll update the firewall to allow HTTPS traffic.

Step 3 - Allowing HTTPS Through the Firewall

If you have the UFW firewall enabled, as recommended by the prerequisite guides, you'll need to adjust the settings to allow HTTPS
traffic. Upon installation, Apache registers a few different UFW application profiles. We can leverage the Apache Full profile to allow
both HTTP and HTTPS traffic on your server.

To verify what kind of traffic is currently allowed on your server, you can use:

sudo ufw status

If you have followed my Apache installation guide, your output should look something like this, meaning that only HTTP traffic on
port 80 is currently allowed:

Status: active

To Action From

OpenSSH Anywhere
Nginx Anywhere
OpenSSH (v6) Anywhere (v6)
Nginx (v6) ALLOW Anywhere (v6)

To additionally let in HTTPS traffic, allow the Apache Full profile and delete the redundant Apache profile:

sudo allow "Nginx Full"

sudo delete allow "Nginx HTTP"

Your status will now look like this:

https://slashflex.io/blog/post/how-to-install-nginx-on-ubuntu-20-04#step-5-setting-up-server-blocks-(recommended)

Status: active

Action From
OpenSSH Anywhere
Nginx Full ALLOW Anywhere
OpenSSH (v6) ALLOW Anywhere (v6)
Nginx Full (v6) ALLOW Anywhere (v6)

Next, let's run Certbot and fetch our certificates.

Step 4 - Obtaining an SSL Certificate

Certbot provides a variety of ways to obtain SSL certificates through plugins. The Nginx plugin will take care of reconfiguring Nginx
and reloading the configuration whenever necessary. To use this plugin, type the following:

sudo certbot --nginx -d example.com -d www.example.com

This runs certbot with the --nginx plugin, using -d to specify the domain names we'd like the certificate to be valid for.

If this is your first time running certbot, you will be prompted to enter an email address and agree to the terms of service. After
doing so, certbot will coommunicate with the Let's Encrypt server, then run a challenge to verify that you control the domain you're
requesting a certificate for.

If that's successful, certbot will ask how you'd like to configure your HTTPS settings.

Please choose whether or not to redirect HTTP traffic to HTTPS, removing HTTP access.
1: No redirect - Make no further changes to the webserver configuration.

2: Redirect - Make all requests redirect to secure HTTPS access. Choose this for

new sites, or if you're confident your site works on HTTPS. You can undo this

change by editing your web server's configuration.

Select the appropriate number [1-2] then [enter] (press "c" to cancel):

Select your choice then hit f2lNlIA28. The configuration will be updated, and Nginx will reload to pick up the new settings. certbot
will wrap up with a message telling you the process was successful and where your certificates are stored:

IMPORTANT NOTES:

- Congratulations! Your certificate and chain have been saved at:
/etc/letsencrypt/live/example.com/fullchain.pem

Your key file has been saved at:
/etc/letsencrypt/live/example.com/privkey.pem

Your cert will expire on 2020-08-20. To obtain a new or tweaked
version of this certificate in the future, simply run certbot again
with the "certonly" option. To non-interactively renew *all* of
your certificates, run "certbot renew"

- If you like Certbot, please consider supporting our work by:

Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate Donating to EFF: https://eff.org/donate-le

Your certificate is now installed and loaded. Try reloading your website using https:// and notice your browser’s security indicator. It
should indicate that the site is properly secured, usually with a lock icon. If you test your server using the SSL Labs Server Test, it will

get an grade.

Let's finish by testing the renewal process.

Step 5 - Verifying Certbot Auto-Renewal

Let's Encrypt’s certificates are only valid for ninety days. This is to encourage users to automate their certificate renewal process. The
certbot package we installed takes care of this for us by adding a systemd timer that will run twice a day and automatically renew
any certificate that's within thirty days of expiration.

You can query the status of the timer with systemctl:

sudo systemctl status certbot.timer

https://www.ssllabs.com/ssltest/

sudo systemctl status nginx

@ certbot.timer - Run certbot twice daily
Loaded: loaded (/lib/systemd/system/certbot.timer; enabled; vendor preset: enabled)
Active: active (waiting) since Tue 2020-04-28 17:57:48 UTC; 17h ago

Trigger: Wed 2020-04-29 23:50:31 UTC; 12h left
Triggers: @® certbot.service

To test the renewal process, you can do a dry run with certbot:

sudo certbot renew

If you see no errors, you're all set. When necessary, Certbot will renew your certificates and reload Nginx to pick up the changes. If
the automated renewal process ever fails, Let's Encrypt will send a message to the email you specified, warning you when your

certificate is about to expire.

Join The Conversation

Please Log In to post.

https://slashflex.io/blog/post/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-20-04/pdf
https://slashflex.io/login

