/ FLX

How To Install the Apache Web Server on
Ubuntu 20.04

Introduction

The Apache HTTP server is the most widely-used web server in the world. It provides many powerful features including dynamically
loadable modules, robust media support, and extensive integration with other popular software.

In this guide, iI'll explain how to install an Apache web server on your Ubuntu 20.04 server.

L] L]
Prerequisites
Before you begin this guide, you should have a regular, non-root user with sudo privileges configured on your server. Additionally,
you will need to enable a basic firewall to block non-essential ports. You can learn how to configure a regular user account and set

up a firewall for your server by following Initial server setup guide for Ubuntu 20.04.

When you have an account available, log in as your non-root user to begin.

Step 1 - Installing Apache

Apache is available within Ubuntu’'s default software repositories, making it possible to install it using conventional package
management tools.

Let's begin by updating the local package index to reflect the latest upstream changes:

sudo apt update

Then, install the apache2 package:

sudo apt install apache2

After confirming the installation, apt will install Apache and all required dependencies.

Step 2 - Adjusting the Firewall

Before testing Apache, it's necessary to modify the firewall settings to allow outside access to the default web ports. Assuming that
you followed the instructions in the prerequisites, you should have a UFW firewall configured to restrict access to your server.

During installation, Apache registers itself with UFW to provide a few application profiles that can be used to enable or disable
access to Apache through the firewall.

https://slashflex.io/
https://github.com/Slashflex
https://www.linkedin.com/in/david-saoud-775624174/
mailto:pro.davidsaoud@gmail.com
https://slashflex.io/
https://slashflex.io/blog/post/initial-server-setup-with-ubuntu-20-04
https://slashflex.io/

List the ufw application profiles by typing:

sudo ufw app list

You will receive a list of the application profiles:

Available applications:
Apache
Apache Full
Apache Secure
OpenSSH

As indicated by the output, there are three profiles available for Apache:
- Apache: This profile opens only port 80 (normal, unencrypted web traffic)
- Apache Full: This profile opens both port 80 (normal, unencrypted web traffic) and port 443 (TLS/SSL encrypted traffic)
- Apache Secure: This profile opens only port 443 (TLS/SSL encrypted traffic)

It is recommended that you enable the most restrictive profile that will still allow the traffic you've configured. Since we haven't
configured SSL for our server yet in this guide, we will only need to allow traffic on port 80:

sudo ufw status

Status: active

To Action From

OpenSSH Anywhere
Apache Anywhere
OpenSSH (v6) ALLOW Anywhere (v6)
Apache (v6) ALLOW Anywhere (v6)

As indicated by the output, the profile has been activated to allow access to the Apache web server.

Step 3 - Checking your Web Server

Check with the systemd init system to make sure the service is running by typing:

sudo systemctl status apache2

® apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled)
Active: active (running) since Fri 2020-04-20 16:08:19 UTC; 3 days ago
Docs: https://httpd.apache.org/docs/2.4/

Main PID: 29435 (apache2)
Tasks: 55 (limit: 1137)

Memory: 8.0M

CGroup: /system.slice/apache2.service
[—-29435 /usr/sbin/apache?2 -k start
L-29437 /usr/sbin/apache2 -k start
L29438 /usr/sbin/apache2 -k start

As confirmed by this output, the service has started successfully. However, the best way to test this is to request a page from
Apache.

You can access the default Apache landing page to confirm that the software is running properly through your IP address. If you do
not know your server’s IP address, you can get it a few different ways from the commmand line.

Try typing this at your server's command prompt:

hostname -|

You will get back a few addresses separated by spaces. You can try each in your web browser to determine if they work.

Another option is to use the Icanhazip tool, which should give you your public IP address as read from another location on the
internet:

curl -4 icanhazip.com

When you have your server’s IP address, enter it into your browser's address bar:

http://your_server_ip

You should see the default Ubuntu 20.04 Apache web page:

@ Apache2 Ubuntu Default Page

%_

This s the default welcome page used 1o test the correct operation of the Apache2 server after installation on Ubuntu
systems. Itis based on the equivalent page on Debian, from which the Ubuntu Apache packaging is derived. If you can
read this page, it means that the Apache HTTP server installed at this site is working properly. You should replace this
file (located at /var/www/html/index.html) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means that the site is
currently unavailable due to maintenance. If the problem persists, please contact the site’s administrator.

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split into several files
optimized for interaction with Ubuntu tools. The configuration system is fully d in
lusrishareldoc/apache2/README.Debian.gz. Refer to this for the full documentation. Documentation for the web
server itself can be found by accessing the manual if the apache2 -doc package was installed on this server.

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows:

/fetc/apache2/

|-- apache2.conf

] “-- ports.conf

| -- mods-enabled

] |-- *.load

] t-- * conf

|-- conf-enabled

| t-- * conf

|-- sites-enabled
t-- *.conf

= apache2.conf is the main configuration file. It puts the pieces together by including all remaining configuration
files when starting up the web server.

= ports.conf is always included from the main configuration file. It is used to determine the listening ports for
incoming connections, and this file can be customized anytime

= Configuration files in the mods -enabled/, conf-enabled/ and sites-enabled/ directories contain
particular configuration snippets which manage modules, glebal configuration fragments, or virtual host
configurations, respectively.

= They are activated by symlinking available configuration files from their respective *-available/ counterparts.
These should be managed by using our helpers a2enmod, a2dismod, a2ensite, a2dissite, and
a2enconf, a2disconf . See their respective man pages for detailed information.

= The binary is called apache2. Due to the use of environment variables, in the default cor ion, apache2
needs to be started/stopped with /etc/init.d/apache2 or apache2ctl. Calling /usr/bin/apache2
directly will not work with the default configuration.

By default, Ubuntu does not allow access through the web browser to any file apart of those located in /var/www,
public_html directories (when enabled) and /usr/share (for web applications). If your site is using a web document
root located elsewhere (such as in /srv) you may need to whitelist your document root directory in
/etc/apache2/apache2. conf.

The default Ubuntu document root is /var/www/htmL. You can make your own virtual hosts under /varfwww. This is
different to previous releases which provides better security out of the box.

Please use the ubuntu-bug tool to report bugs in the Apache2 package with Ubuntu. However, check existing bug
reports before reporting a new bug.

Please report bugs specific to modules (such as PHP and others) to respective packages, not to the web server itself.

This page indicates that Apache is working correctly. It also includes some basic information about important Apache files and
directory locations.

Step 4 - Managing the Apache Process
Now that you have your web server up and running, let's go over some basic management commands using systemctl.

To stop your web server, type:

sudo systemctl stop apache2

To start the web server when it is stopped, type:

sudo systemctl start apache2

To stop and then start the service again, type:

sudo systemctl restart apache2

If you are simply making configuration changes, Apache can often reload without dropping connections. To do this, use this
command:

sudo systemctl reload apache2

By default, Apache is configured to start automatically when the server boots. If this is not what you want, disable this behavior by

—
<
o

)
Q

sudo systemctl disable apache2

To re-enable the service to start up at boot, type:

sudo systemctl enable apache2

Apache should now start automatically when the server boots again.

Step 5 - Setting Up Virtual Hosts (Recommended)

When using the Apache web server, you can use virtual hosts (similar to server blocks in Nginx) to encapsulate configuration details
and host more than one domain from a single server. We will set up a domain called your_domain, but you should replace this
with your own domain name.

Apache on Ubuntu 20.04 has one server block enabled by default that is configured to serve documents from the /var/www/html
directory. While this works well for a single site, it can become unwieldy if you are hosting multiple sites. Instead of modifying
[/var/www/html, let's create a directory structure within /var/www for a your_domain site, leaving /var/www/html in place as the

default directory to be served if a client request doesn’t match any other sites.

Create the directory for your_domain as follows:

sudo mkdir /var/www/your_domain

Next, assign ownership of the directory with the $USER environment variable:

sudo chmod -R 755 /var/www/your_domain

Next, create a sample index.html page using nano or your favorite editor:

sudo nano /var/www/your_domain/index.html

Inside, add the following sample HTML:

title>Welcome to Your_ domain!

Success! The your_domain virtual host is working

Save and close the file when you are finished.
In order for Apache to serve this content, it's necessary to create a virtual host file with the correct directives. Instead of modifying

the default configuration file located at /etc/apache2/sites-available/000-default.conf directly, let's make a new one at
/etc/apache2/sites-available/your_domain.conf:

sudo nano /etc/apache2/sites-available/your_domain.conf

Paste in the following configuration block, which is similar to the default, but updated for our new directory and domain name:

Notice that we've updated the DocumentRoot to our new directory and ServerAdmin to an email that the your_domain site
administrator can access. We've also added two directives: ServerName, which establishes the base domain that should match for
this virtual host definition, and ServerAlias, which defines further names that should match as if they were the base name.

Save and close the file when you are finished.

Let's enable the file with the a2ensite tool:

sudo a2ensite your_domain.conf

Disable the default site defined in 000-default.conf:

sudo a2dissite 000-default.conf

Next, let's test for configuration errors:

sudo apache2ctl configtest

You should receive the following output:

Syntax OK

Restart Apache to implement your changes:

sudo systemctl restart apache2

Apache should now be serving your domain name. You can test this by navigating to http://your_domain, where you should see
something like this:

Success! The your domain virtual host is working!

Step 6 - Getting Familiar with Important Apache Files and Directories

Now that you know how to manage the Apache service itself, you should take a few minutes to familiarize yourself with a few
important directories and files.

Content

/var/www/html: The actual web content, which by default only consists of the default Apache page you saw earlier, is served out of
the /var/www/html directory. This can be changed by altering Apache configuration files.

Server Configuration

- [etc/apache2/apache2.conf:
The main Apache configuration file. This can be modified to make changes to the Apache global configuration. This file is
responsible for loading many of the other files in the configuration directory.

- [etc/apache2/ports.conf:
This file specifies the ports that Apache will listen on. By default, Apache listens on port 80 and additionally listens on port 443 when
a module providing SSL capabilities is enabled.

- [etc/apache2/sites-available/:
The directory where per-site virtual hosts can be stored. Apache will not use the configuration files found in this directory unless
they are linked to the sites-enabled directory. Typically, all server block configuration is done in this directory, and then enabled by
linking to the other directory with the a2ensite command.

- [etc/apache2/sites-enabled/:
The directory where enabled per-site virtual hosts are stored. Typically, these are created by linking to configuration files found in
the sites-available directory with the a2ensite. Apache reads the configuration files and links found in this directory when it starts
or reloads to compile a complete configuration.

- Jetc/apache2/conf-available/, /etc/apache2/conf-enabled/:
These directories have the same relationship as the sites-available and sites-enabled directories, but are used to store
configuration fragments that do not belong in a virtual host. Files in the conf-available directory can be enabled with the a2enconf
command and disabled with the a2disconf command.

- Jetc/apache2/mods-available/, /etc/apache2/mods-enabled/:
These directories contain the available and enabled modules, respectively. Files ending in .Jload contain fragments to load specific
modules, while files ending in .conf contain the configuration for those modules. Modules can be enabled and disabled using the
a2enmod and a2dismod command.

- Jetc/apache2/conf-available/,

/etc/apache2/conf-enabled/.
These directories have the same relationship as the sites-available and sites-enabled directories, but are used to store
configuration fragments that do not belong in a virtual host. Files in the conf-available directory can be enabled with the a2enconf
command and disabled with the a2disconf command.

- [etc/apache2/mods-available/,
/etc/apache2/mods-enabled/:
These directories contain the available and enabled modules, respectively. Files ending in Joad contain fragments to load specific

modules, while files ending in .conf contain the configuration for those modules. Modules can be enabled and disabled using the
a2enmod and a2dismod command.

Server Logs

- /var/log/apache2/access.log:
By default, every request to your web server is recorded in this log file unless Apache is configured to do otherwise.

- [var/log/apache2/error/log:
By default, all errors are recorded in this file. The LogLevel directive in the Apache configuration specifies how much detail the error

logs will contain.

Now that you have your web server installed, you have many options for the type of content you can serve and the technologies you

can use to create a richer experience.

Join The Conversation

Please Log In to post.

https://slashflex.io/blog/post/how-to-install-the-apache-web-server-on-ubuntu-20-04/pdf
https://slashflex.io/login

